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Abstract
In this paper, we provide an explicit parametrization of arbitrary n-dimensional
Hermitian operators on the Hilbert space C

n, operators that may be considered
either as Hamiltonians or density matrices for finite-level quantum systems,
the description of which gives a complete solution to the over parametrization
problem. It is shown that all the spectral multiplicities are encoded in a flag
unitary matrix obtained as an ordered product of special unitary matrices, each
one generated by a complex n−k-dimensional unit vector, k = 0, 1, . . . , n−2.
As a byproduct, an alternative and simple parametrization of Stiefel and
Grassmann manifolds is obtained.

PACS numbers: 02.10.Sp, 02.30.Tb

1. Introduction

There is considerable interest in a simple description of density matrices that have a wide
variety of applications, particularly in quantum information theory, and many efforts have
been devoted in describing them. However the problem of over-parametrization is still open
[16], for an arbitrary n. We solve this problem by providing an explicit parametrization of
eigenvalues as well as of the unitary matrices that diagonalize arbitrary finite-dimensional
Hermitian operators. Naturally, such a description is closely related to the description of
various homogeneous manifolds, as mentioned in the title. On the other hand, the Stiefel or
Grassmann manifolds arise in many problems from different other domains such as encryption,
coherent states, geometric phases, signal processing, geometric integration on homogeneous
manifolds, numerical linear algebra algorithms and many others. In such problems, the states
of interest are, in general, elements of some homogeneous space

X ∼= G/K (1.1)
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where G is a Lie group and K is a closed subgroup of G. Further, in problems arising in
engineering, physics, quantum information theory, one needs a concrete realization of these
manifolds in a form able to be stored in a computer and that could be used for doing symbolic
and numerical calculations. Although, the geometrical description of Grassmann and Stiefel
manifolds is available in many books, see for example [7, 8], the available parametrizations
of the above manifolds are not the most convenient in some concrete applications,
e.g. [4, 10, 15].

Another aim of the paper is to obtain a satisfactory description of Hermitian operators
that appear in the study of finite-level systems. By satisfactory, we mean as complete as
possible description of equivalence classes of Hermitian operators, i.e., a full and complete
parametrization of these operators.

Such a construction addresses an old fundamental question in the theory of measurement
[9, 14], namely if it is possible to measure experimentally the ‘variables’ corresponding to an
arbitrary Hermitian operator. Thus, the first question to be solved is finding the ‘variables’
entering a Hermitian operator. After that, the answer is simple: there does exist an experimental
embodiment for every Hermitian operator in finite-dimensional Hilbert space; see [11] for
details concerning its realization.

Formally, the states of an n-level quantum system are described by density matrices ρ that
are positive, Hermitian operators whose trace is normalized to unity

ρ = {ρ � 0, ρ = ρ∗, Tr ρ = 1} (1.2)

where ∗ denotes adjoint, i.e., the complex conjugated transpose. If we denote by D =
(λ1, . . . , λn), the diagonal matrix of ρ eigenvalues, elementary facts from the spectral theory
of self-adjoint operators tell us that there exists a unitary operator U ∈ U(n) generated by the
eigenvectors of ρ such that

ρ = UDU ∗ (1.3)

with
∑n

1 λi = 1. In particular in the physics literature, U, entering equation (1.3), is considered
an element of SU(n− 1), that evidently leads to an over-parametrization. Thus when we have
to do some symbolical, or even numerical calculations, as in [16] or [12], we have to be more
careful. We shall see later that such a U is a matrix realization of the flag manifold

X ∼= U(n)/U(1)n (1.4)

where U(1)n denotes the torus subgroup of U(n). By obtaining a full and explicit
parametrization of X, we obtain, via formula (1.3), a parametrization of all finite-dimensional
Hermitian operators whose spectra are simple. In fact the parameters entering H are within the
topological product R

n × Fl(n), where Fl(n) denotes the flag manifold. As concerns U(n), its
parametrization is given by T n ×Fl(n), where T n is the n-dimensional torus. By consequence,
the parametrizations of unitary and Hermitian operators are given by different topological sets.

In modern quantum information theory the Stokes–Poincaré–Bloch form [5] of the density
matrix is usually used. In this approach, ρ is written as

ρ = In

n
+

1

2

n2−1∑
i=1

vi�i

where v ∈ R
n2−1 is a real vector and �i is a Hermitian base of SU(n) normalized as

Tr �i�j = 2δij . The weak point of that representation is that one cannot easily satisfy the
positivity constraint on the spectrum of ρ. Until now only the property ρ2 � 1 has been used,

that leads to the condition ‖v‖ �
√

2(n−1)

n
on the norm of the vector v. Only for n = 2 is this

condition necessary and sufficient for positivity. Recently [1], it was shown that the positivity
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property can be expressed by the constraints Tr ρk � 1, for k = 2, . . . , n − 1, which led to
complicated relations that the components vi have to satisfy. Even so, the introduction of ρ

in the standard form (1.3) can be done only for n = 2, 3, 4 since only then the eigenvalue
equation can be solved by known formulae. To give a flavour of what we will do let us consider
the case n = 2 in the Bloch representation, i.e.,

ρ = I2

2
+

1

2

3∑
1

v1σi = 1

2

(
1 + v3 v1 − iv2

v1 + iv2 1 − v3

)
(1.5)

where σi are the Pauli matrices. Its eigenvalues and unnormalized eigenvectors provided by
Mathematica are

λ1,2 = 1

2

(
1 ±

√
v2

1 + v2
2 + v2

3

)
, u1,2 =


v3 ±

√
v2

1 + v2
2 + v2

3

v1 + iv2
, 1


 . (1.6)

Thus, apparently both the eigenvalues and eigenvectors depend on all parameters entering
v and there is no way to disentangle them, although in this simplest case it is clear that the
eigenvalues depend in fact on a single parameter, the norm of v. By making in (1.5) the change
of variable

v3 = cos 2ϕ cos 2α v2 = cos 2ϕ sin 2α sin 2β v1 = cos 2ϕ sin 2α cos 2β (1.7)

we find the eigenvalues λ1 = cos2 ϕ, λ2 = sin2 ϕ, and the matrix of orthonormal eigenvectors

M2 =
(

cos α sin α

sin α eiβ − cos α eiβ

)
∈ Fl(2) (1.8)

and ρ in (1.5) is written as

ρ = M2

(
cos2 ϕ 0

0 sin2 ϕ

)
M∗

2 . (1.9)

In the paper, we provide explicit parametrizations of the form (1.9) treating by a unified
method the spectral types of Hermitian operators, by properly taking into account their spectral
multiplicities. The problem is closely related to the description of isometries between the
Hilbert spaces C

k and C
n, 1 � k � n. The isometries are operators generated by n × k or

k × n matrices whose columns, and respectively rows, are orthogonal and preserve the vector
norms, and in the following we show that there is a close relationship between these isometries
and different matrix realizations of the coset spaces generated as in (1.1). The necessity of
working with matrices that have orthogonal column vectors, or row vectors, became evident
in recent years; see, e.g. [4, 6].

The mathematical background necessary for obtaining such results are elementary facts
from the spectral theory of self-adjoint operators and the theory of contraction operators, and
a trivial lemma that we state here for the case of the n-dimensional unitary group G = U(n);
for the general case see [7].

Lemma 1. The coset relation

X ∼= U(n)/K (1.10)

where K ⊂ U(n) is a subgroup can be written as a matrix relation in the following form:

Mn = AnBK (1.11)

where Mn ∈ U(n) is an arbitrary n × n unitary matrix, An ∈ U(n) is a unitary matrix
parametrized by a point of the coset X and BK ∈ K is an arbitrary element of the subgroup K
viewed as an element embedded in U(n).
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Using it we obtain new parametrizations of flag, Stiefel and Grassmann manifolds. The
paper contains our results concerning the factorization of unitary matrices [3] in terms of n
complex vectors vi ∈ S2i−1, i = 1, . . . , n, where Sk is the k-dimensional sphere in C

n. We
denote by M(n, k) the set of all n × k complex matrices over C

n, and the main mathematical
result of the paper is

Main Theorem. Let I ∈ M(n, k) be an n × k complex matrix that generates an isometry,
i.e., I : C

k → C
n, I∗I = Ik . Then, the matrix representation of the coset generated by the

point I is realized in terms of a unitary matrix A(n, k) that diagonalizes the projection DT ∗ ,
where DT ∗ is the defect operator associated with the isometry I, under the form

In − DT ∗ = A(n, k)

(
Ik 0
0 0n−k

)
A(n, k)∗ =

k∑
i=1

ci · c∗
i = II∗ (1.12)

where ci, i = 1, . . . , k, are the (orthogonal) column vectors of I.

All the results discussed in this work are obtained by providing the explicit form of the
corresponding objects under study, and are a direct consequence of the above theorem.

The organization of paper is as follows. In section 2, we show the close relationship
between the isometries I ∈ M(n, k) and matrix realizations of the coset spaces. In section 3,
we reformulate our results [3] in a more convenient form for the present applications, and
we find the generic parametrization of n-dimensional Hermitian operators. In section 4, we
obtain our matrix parametrizations of Stiefel and Grassmann manifolds.

2. Isometries

In this section, we show how the isometries I ∈ M(n, k) can be used for the parametrization
of various interesting manifolds. The main idea is that the isometries generated by k rows,
or columns of an arbitrary n × n matrix, 1 � k � n, allow us to define projection operators
whose spectral decomposition provides the necessary tool in finding matrix representations
of various interesting manifolds. For what follows, we need a few elementary notions from
contraction operator theory.

An operator T mapping the Hilbert space H to the Hilbert space H′ is a contraction if for
any v ∈ H, ‖T v‖H′ � ‖v‖H, i.e., ‖T ‖ � 1, where ‖T ‖ denotes the norm of T [13]. For any
contraction we have T ∗T � IH and T T ∗ � IH′ , where T ∗ denotes the adjoint, that is defined
by the relation (T v, v′) = (v, T ∗v′), v ∈ H, v′ ∈ H′, and (· , ·) is the usual inner product
in H, or, respectively,H′. To any contraction T, one associates two defect operators by the
relations

DT = (IH − T ∗T )1/2, DT ∗ = (IH′ − T T ∗)1/2 (2.1)

that are Hermitian operators in H and H′, respectively. They have the property

T DT = DT ∗T , T ∗DT ∗ = DT T ∗. (2.2)

In the following, we will use only finite-dimensional isometries generated by n × k, or k × n

matrices, and for definiteness we consider the first case, i.e., T has n rows and k columns and
we denote it by I. We are interested in contractions of a special form, namely the isometries
between C

k and C
n. They are operators I : C

k → C
n that satisfy I∗I = Ik , k = 1, . . . , n,

i.e., the columns of I are orthogonal columns, and respectively, I : C
n → C

k that satisfy
II

∗ = Ik , when the k rows are orthogonal. With our choice, i.e. I is an n× k matrix, we have
the identification H ≡ C

k and H′ ≡ C
n.
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For an isometry I generated by k columns, relations (2.1) give DT = DI = 0. However,
in the following we preserve the notation for the defect operator DT , to be implied that it is
generated by a definite contraction, and from the first relation (2.2) we deduce that

DT ∗T = T DT = 0 = DT ∗I = λI, (2.3)

i.e., all columns of I are in the kernel of DT ∗ . In other words, the k column vectors are the
eigenvectors that correspond to the eigenvalue λ = 0, and these eigenvectors are orthogonal.
When DT = 0, the other defect operator DT ∗ is a projection, i.e. a self-adjoint operator which
satisfies DT ∗ = D2

T ∗ , and we infer that rank DT ∗ = n − k; thus, In − DT ∗ projects onto the
eigenspace corresponding to the eigenvalue λ = 1. From the preceding relation we get

(In − DT ∗)I = InI = I = λI, (2.4)

i.e., the k column vectors of I are the orthogonal eigenvectors of In − DT ∗ corresponding to
the k eigenvalues λ = 1, or in other words, rank (In − DT ∗) = k.

For us the interesting objects are the unitary matrices that diagonalize the projections DT ∗

and In − DT ∗ . Let A(n, k) be the unitary matrix which diagonalizes the projection DT ∗ , then

A(n, k)∗DT ∗A(n, k) =
(

0k 0
0 In−k

)
(2.5)

and from it we obtain a matrix representation of the projection DT ∗ under the form

DT ∗ = A(n, k)

(
0k 0
0 In−k

)
A(n, k)∗. (2.6)

The last relation can also be written as

A(n, k)∗(In − DT ∗)A(n, k) =
(

Ik 0
0 0n−k

)
(2.7)

or under the form that will be used in the following:

In − DT ∗ = A(n, k)

(
Ik 0
0 0n−k

)
A(n, k)∗ =

k∑
i=1

ci · c∗
i = II∗ (2.8)

where ci, i = 1, . . . , k, are the column vectors of the isometry I. Equations (2.6) and
(2.8) provide matrix representations for both the projections on the n − k-, and respectively
k-dimensional, subspaces of C

n. In our applications A(n, k) will be an n × n unitary matrix
generated by a coset as in lemma 1, coset, which at its turn, is parametrized by the point I.

The above representation does not provide a full explicit form for the matrix A(n, k), its
first k columns coincide with the I columns. Thus, an important problem is the completion of
the matrix A(n, k) with n−k columns without introducing new parameters, i.e., the next n−k

columns must be determined by the first k columns. To do this we need a parametrization of the
first k columns and the most convenient one is to introduce generalized spherical coordinates.
In the next section, we show that the most important case is k = 1, the other cases being a
direct consequence of it, which leads to a factorization of unitary matrices. In the same time,
we reformulate our results from [3], concerning factorization of unitary matrices, that will
provide the necessary tools for obtaining matrix realizations for symmetric manifolds.

3. Factorization of unitary matrices

The idea behind such a factorization comes from the following sequence:

U(n)∼= U(n)

U(n − 1)
× U(n − 1)

U(n − 2)
× · · · × U(2)

U(1)
× U(1)

∼= S2n−1 × S2n−3 × · · · × S3 × S1 (3.1)
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that shows that each factor can be parametrized by an arbitrary point on the corresponding
complex sphere.

The matrix realization of formula (3.1), which is the main result in [3], is given by

Theorem 1. Any element Mn ∈ U(n) can be factored into an ordered product of n matrices
of the following form:

Mn = B0
n · B1

n−1 · · · Bn−1
1 (3.2)

where

Bk
n−k =

(
Ik 0
0 Bn−k

)

and Bn−k ∈ U(n − k) are special unitary matrices, each one generated by a single complex
(n − k)-dimensional unit vector, bn−k ∈ S2(n−k)−1. For example B1 = eiϕ , where ϕ is an
arbitrary phase.

If ym ∈ S2m−1,m = 1, . . . , n, is parametrized by

ym = (eiϕ1 cos θ1, eiϕ2 sin θ1 cos θ2, . . . , eiϕm sin θ1, . . . , sin θm−1)
t

where t denotes transpose, the m columns of Bm are given by

v1 = ym =




eiϕ1 cos θ1

eiϕ2 sin θ1 cos θ2

·
·
·

eiϕm sin θ1, . . . , sin θm−1




and

vk+1 = d

dθk

v1(θ1 = · · · = θk−1 = π/2), k = 1, . . . , m − 1,

where in the above formula one calculates first the derivative and afterwards the restriction
to π/2.

For our aims we need an explicit parametrization of Bn−k, k = 0, . . . , n − 1, and we
choose the n generating vectors of Bn as follows:

yn = (eiα1 cos a1, eiα2 sin a1 cos a2, . . . , eiαn sin a1, . . . , sin an−1)
t

yn−1 = (eiβ1 cos b1, eiβ2 sin b1 cos b2, . . . , eiβn−1 sin b1, . . . , sin bn−2)
t

....................................................................................................

y2 = (eiψ1 cos z1, eiψ2 sin z1)
t

y1 = eiω1 .

(3.3)

The projection operator In −DT ∗ entering formula (2.8) is a self-adjoint operator, and for
such an operator its eigenvectors ci are defined up to an overall phase. We choose the phases
such that the first entry of each eigenvector is nonnegative. With the generating vectors of the
form (3.3), the parametrization of the matrix (3.2), given by theorem 1, is such that its first
row entries have the form

m11 = eiα1 cos a1, m12 = −ei(α1+β1) cos b1 sin a1,

m13 = ei(α1+β1+γ1) cos c1 sin a1 sin b1, . . . ,

m1n = (−1)n−1ei(α1+···+ω1) sin a1 · · · sin z1

(3.4)
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and if we require that these matrix elements be nonnegative we have to take

α1 = 0, β1 = γ1 = · · · = ω1 = π. (3.5)

In the following, we shall use these constraints in relations (3.3), and so we remove the first
phase of each of the vectors yk and change the numbering as αi → αi−1, i = 2, . . . , n, βi →
βi−1, i = 2, . . . , n − 1, etc, and now each vector yk is parametrized by 2(k − 1) parameters,
k = 2, . . . , n, i.e., an equal number of phases and angles. In this way, the last vector is a
number, y1 = −1, such that B1

n−1 is the constant diagonal matrix with diagonal (In−1,−1),
and relation (3.2) has the following form:

Mn = B0
n · B1

n−1 · · · Bn−1
1 . (3.6)

The last matrix is the matrix realization of the flag manifold

Fl(n) ∼= U(n)

U(1) × U(1) × · · · × U(1)
∼= U(n)

U(1)n
(3.7)

it depends on n(n − 1) parameters and it is the most general form of a unitary matrix that
diagonalizes an n-dimensional Hermitian operator H all of whose eigenvalues are simple.

Putting together the information contained in theorem 1 and formulae (3.6) and (3.7) we
have the following:

Corollary 1. The matrix Mn describes the spectral decomposition of a finite-dimensional
Hermitian operator H whose eigenvalues are simple, i.e., they satisfy a relation as

λ1 > λ2 > · · · > λn

and the operator H is written in the form

H = Mn�M∗
n =

n∑
i=1

λiuiu
∗
i (3.8)

where ui, i = 1, . . . , n, are the column vectors of the matrix (3.6) and � is the diagonal
matrix of eigenvalues. If H � 0 and Tr H = h ∈ R

∗
+, then λi , entering formula (3.12), could

be parametrized as

λ1 = h cos2 θ1, λ2 = h sin2 θ1 cos2 θ2, . . . , λn = h sin2 θ1 · · · sin2 θn−1 (3.9)

where θi ∈ [0, π/2], i = 1, . . . , n − 1, are arbitrary angles. If H is a density operator, h = 1
in the above relation.

If H is not positive definite, let us suppose that its first p eigenvalues are positive and n−p

are negative. If Tr H = 0 and h = Tr Hλi>0 = −Tr Hλi<0 ∈ R
∗
+, then a parametrization of

eigenvalues is given by

λ1 = h cos2 θ1, λ2 = h sin2 θ1 cos2 θ2, . . . , λp = h sin2 θ1 · · · sin2 θp−1, (3.10)

λp+1 = −h cos2 θp, . . . , λn = −h sin2 θp · · · sin2 θn−1. (3.11)

If Tr H = h 	= 0, the parametrization of eigenvalues is given by

λ1 = |h| cosh2 θ, λ2 = |h| cosh2 θ cos2 θ1, . . . ,

λp = |h| cosh2 θ sin2 θ1 · · · sin2 θp−2 (3.12)

λp+1 = −|h| sinh2 θ, . . . , λn = −|h| sinh2 θ sin2 θp−1 · · · sin2 θn−2 (3.13)

if h > 0, where θ ∈ R
∗
+, θi ∈ [0, π/2], i = 1, . . . , n−2, are arbitrary angles, and by a similar

formula in which one interchanges ch2θ � sh2θ , if h < 0.

In this way, corollary 1 gives a simple and explicit parametrization of all generic finite-
dimensional Hermitian operators.
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4. Matrix realizations of Stiefel and Grassmann manifolds

Looking at relation (3.7) we consider that the next, simpler, manifold is the Stiefel manifold
that we define as the coset space

St(k, n) ∼= U(n)

U(1)k × U(n − k)
∼= Fl(n)

Fl(n − k)
(4.1)

instead of the usual definition

St(k, n) ∼= U(n)

U(n − k)
. (4.2)

Both forms are similar, only the number of parameters entering them is different. According
to lemma 1 we can write the first relation (4.1) as a matrix relation

Mn = A(n, k)

(
Ik 0
0 Mn−k

)
(4.3)

where Mn ∈ U(n), Mn−k ∈ U(n − k) and A(n, k) ∈ Fl(n) is the matrix realization of the
Stiefel manifold St(k, n) parametrized by a point represented by an n × k complex matrix,
with the first row entries being nonnegative numbers. Alternatively, we may consider that
Mn ∈ Fl(n), Mn−k ∈ Fl(n − k). Looking at relation (2.8) we see that A(n, k) is the same
object in both relations (2.8) and (4.3). By consequence we deduce from (3.6) that

A(n, k) = B0
n · B1

n−1 · · · Bk−1
n−k+1 (4.4)

is the matrix realization of the Stiefel manifold (4.1). Thus, the following holds:

Theorem 2. The matrix representation of the Stiefel manifold St(k, n) as defined by (4.1) is
obtained from the parametrization (3.6) by taking zero all the parameters entering U(n − k),
i.e., U(n − k) = In−k such that

A(n, k) = B0
n · B1

n−1 · · · Bk−1
n−k+1. (4.5)

The matrix representation of the projection In − DT ∗ writes

In − DT ∗ = St(k, n) = c1c
∗
1 + · · · + ckc

∗
k (4.6)

where ci, i = 1, . . . , k are the first k column vectors of (4.5). As long as the matrix (4.5) is
parametrized by d = n2 − k − (n − k)2 = k(2n − k − 1) real parameters, we can choose
any k column vectors of (4.5) in formula (4.6) and we can make this choice in

(
n

k

)
modes. A

similar formula can be obtained for a Stiefel manifold defined as in (4.2)

As a consequence of the above theorem, we have the following

Corollary 2. The matrix (4.5) describes the spectral decomposition of a finite-dimensional
Hermitian operator H that has a degenerate eigenvalue of multiplicity k, λ1 = · · · = λk , and
all the other eigenvalues are simple. In this case, H writes

H = A(n, k)�A(n, k)∗ = λ1

k∑
j=1

uju
∗
j +

n−k∑
i=1

λk+iui+ku
∗
i+k (4.7)

where ui, i = 1, . . . , n, are the column vectors of the matrix (4.5). If H is a density operator,
then

λ1 = cos2 θ1/k, λk+1 = sin2 θ1 cos2 θ2, . . . , λn = sin2 θ1 sin2 θ2 · · · sin2 θn−k−1

where θi ∈ [0, π/2], i = 1, . . . , n − k − 1, are arbitrary angles. If H is not positive definite,
the eigenvalues are parametrized by similar formulae, as in corollary 1.
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The Grassmann manifold, Gr(k, n), is defined as the set of all k-dimensional subspaces
of C

n, and Gr(k, n) is viewed as the coset space

Gr(k, n)∼= U(n)

U(k) × U(n − k)
∼= Fl(n)

Fl(k) × Fl(n − k)
(4.8)

and by consequence the real dimension of the Grassmann manifold Gr(k, n) equals

d1 = n2 − k2 − (n − k)2 = 2k(n − k). (4.9)

As in the case of Stiefel manifolds, we want first to obtain a parametrization of A(n, k)

which is equivalent with finding a parametrization of Grassmannians. With that end in view
we rewrite relation (4.9) into the form

Mn = A(n, k)

(
Bk 0
0 In−k

)
×

(
Ik 0
0 Cn−k

)
(4.10)

where Mn ∈ U(n) is an arbitrary matrix from U(n) and Bk ∈ U(k) and, respectively,
Cn−k ∈ U(n − k).

If we look at relations (3.6) or (4.5) and consider one of them for the case k = 1, we
observe that B0

n is equal to A(n, 1). Thus, we obtain a matrix representation for

In − P = Gr(1, n) = A(n, 1)

(
1 0
0 0n−1

)
A(n, 1)∗, (4.11)

i.e., the simplest Grassmannian, a result already known. The preceding relation can be written
in an equivalent form as

Gr(1, n) = v1 · v∗
1 (4.12)

where v1 is the vector that generates B0
n , i.e., the vector yn from relation (3.3). Thus, A(n, 1)

can be obtained from (3.6) by taking all the phases and angles entering U(n−1) equal to zero,
i.e., U(n − 1) = In−1.

In the following, we show that A(n, k) can be obtained in a similar way. Taking into
account the form of the projection operator In −P and the dimensions d and d1 for Stiefel and
Grassmann manifolds, respectively, we infer that the Grassmann manifold is a special case
of a Stiefel manifold. Our problem now is to find those constraints which lead to the correct
parametrization of A(n, k) for Grassmannians.

In order to view which are the constraints, let us consider the case k = 2. By taking into
account that the first column of A(n, 2) coincides with the vector v1 that generates the matrix
(4.12), we infer from (4.9) that the parametrization of the second column is given in terms of
2(n − 3) new real parameters. This means that we have to remove an angle and a phase from
the vector yn−1, equation (3.3). A convenient choice is to take equal to zero the last angle and
phase, i.e., bn−2 = βn−2 = 0. This choice induces the following form for the matrix B1

n−1:

B1
n−1(bn−2 = βn−2 = 0) = B

1,1
n−1 =


1 0 0

0 Bn−2 0
0 0 1


 (4.13)

where Bn−2 is generated as in theorem 1 by the vector

y ′
n−2 = (cos b1, eiβ1 sin b1 cos b2, . . . , eiβn−3 sin b1 · · · sin bn−3)

t . (4.14)

It is easily seen that this structure preserves from k → k + 1 such that

B
k,k
n−k =


Ik 0 0

0 Bn−2k 0
0 0 Ik


 , k = 1, . . . ,

[n

2

]
(4.15)
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where [a] denotes the integer part of a, and Bn−2k, k = 1, . . . , [ n
2 ], are generated by the vectors

w1 = (cos a1, eiα1 sin a1 cos a2, . . . , eiαn−1 sin a1 · · · sin an−1)
t

w2 = (cos b1, eiβ1 sin b1 cos b2, . . . , eiβn−3 sin b1 · · · sin bn−3)
t

..........................................................................................................

wp = (cos l1, eiϕ1 sin l1 cos l2, . . . , eiϕn−(2p−1) sin l1 · · · sin ln−(2p−1))
t

...........................................................................................................

w[n/2] = (cos z1, eiω1 sin z1 cos z2, eiω2 sin z1 sin z2)
t , for n odd

w[n/2] = (cos z1, eiω1 sin z1)
t , for n even.

(4.16)

With the above notation the following holds:

Theorem 3. The unitary matrix A(n, k) ≡ G(n, k) ∈ Fl(k, n − k; n) entering the matrix
representation of Grassmann manifold has the form

G(n, k) = B0
n · B

1,1
n−1 · · · Bk−1,k−1

n−k+1 , k = 1, . . . ,
[n

2

]
(4.17)

and the matrix representation of the projection onto the k-dimensional subspace of C
n is

In − DT ∗ = Gr(k, n) = G(n, k)

(
Ik 0
0 0

)
G(n, k)∗. (4.18)

An equivalent description is given by

Gr(k, n) =
k∑
1

ui · u∗
i (4.19)

where ui, i = 1, . . . , k, are the first k column vectors of matrix (4.17).

Corollary 3. If H is a Hermitian operator that has only two eigenvalues whose multiplicities
are k and n − k then

H = G(n, k)�G(n, k)∗ = λ1

k∑
i=1

uiu
∗
i + λ2

n∑
i=k+1

uiu
∗
i (4.20)

where ui, i = 1, . . . , n, are the column vectors of the matrix G(n, k), equation (4.17). If H is
a density matrix operator, then λ1 = cos2 θ/k and λ2 = sin2 θ/(n − k), where θ ∈ [0, π/2]
is an arbitrary angle. When H is not positive definite and Tr H = h, the parametrization of
eigenvalues is: λ1 = h cosh2 θ and λ2 = −h sinh2 θ , if λ1 > |λ2|, and λ1 = |h| sinh2 θ and
λ2 = −|h| cosh2 θ , if h < 0.

Matrix realization of other flag manifolds, as e.g.,

Fl(k1, k2, . . . , kl, ; n) ∼= Fl(n)

Fl(k1) × Fl(k2) × · · · × Fl(kl)
(4.21)

with
∑l

i ki � n that describe other spectral multiplicities, can be found in a similar way.
Assembling together all the previous information we have

Corollary 4. The flag matrix (3.6) encodes all the possible spectral decompositions of
finite-dimensional Hermitian operators, acting on C

n, i.e., any other particular unitary matrix
A(n, k) that describes a given spectral multiplicity of a Hermitian operator can be obtained
from it by properly restricting the number of parameters entering (3.6).
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5. Conclusion

In this paper, we have obtained a constructive parametrization of all finite-level Hermitian
operators. Further, this construction is recursive: if we have a parametrization of Mn,Mn+2

is obtained by embedding Mn into Mn+2 and by multiplication at left by an appropriate
matrix. We have shown that the unitary matrices which diagonalize the Hermitian operators
are subsets of the flag unitary matrix Mn whose explicit form is given by formula (3.6). When
the eigenvalues are simple, the generic form of the unitary operators is Mn; when there is
a k-fold degeneracy, the corresponding unitary matrices are in the set St(k, n). If there is a
maximum degeneracy, i.e., only two eigenvalues, with multiplicities k and, respectively n− k,
are distinct, the unitaries are in the Grassmannian Gr(k, n). Our explicit construction was
done only for the n-dimensional unitary group U(n), but it is evident that the same approach
works in the case of any compact group. For example, taking as zero all the phases entering
U(n) and doing similar calculations, one gets results for SO(n) and so on.

We consider that the above parametrization will be useful for doing calculation, especially
for problems where one has to make an optimization over a set of parameters, e.g., for the
characterization of entanglement.

Taking also into account our previous results [3], which state that any unitary matrix
entering Mn is an ordered product of n − 1 diagonal phase matrices and n(n − 1)/2 two-
dimensional rotations, one can make use of the device designed by Reck et al [11] to give
an operational meaning in the real world to any finite-level Hermitian operator. This means
that all the Hermitian matrices could be experimentally implemented and, as a consequence,
could be measured. Such multi-state devices will find applications in quantum information
processing and quantum computation.

At the same time, we obtained a new and simple analytic representation of Stiefel and
Grassmann manifolds, a representation that is essentially contained in a unitary matrix A(n, k),
which can easily be stored in a computer, and problems similar to those encountered in
[4, 10], or [15] will be easier to solve.
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